JavaScript

From wiki.gis.com
Jump to: navigation, search
JavaScript
Paradigm Multi-paradigm: prototype-based, functional,[1] imperative, scripting
Appeared in 1995
Designed by Brendan Eich
Developer Netscape Communications Corporation, Mozilla Foundation
Latest release 1.8.1/ 2009
Typing discipline dynamic, weak, duck
Major implementations SpiderMonkey, Rhino, KJS, JavaScriptCore, V8
Dialects JScript, JScript .NET
Influenced by Self, C, Scheme, Perl, Python, Java
Influenced Objective-J

JavaScript is a scripting language used to enable programmatic access to objects within both the client application and other applications. It is primarily used in the form of client-side JavaScript, implemented as an integrated component of the web browser, allowing the development of enhanced user interfaces and dynamic websites. JavaScript is a dialect of the ECMAScript standard and is characterized as a dynamic, weakly typed, prototype-based language with first-class functions. JavaScript was influenced by many languages and was designed to look like Java, but to be easier for non-programmers to work with.[2][3]

History and naming

JavaScript was originally developed by Brendan Eich of Netscape under the name Mocha, which was later renamed to LiveScript, and finally to JavaScript.[4][5] The change of name from LiveScript to JavaScript roughly coincided with Netscape adding support for Java technology in its Netscape Navigator web browser. JavaScript was first introduced and deployed in the Netscape browser version 2.0B3 in December 1995. The naming has caused confusion, giving the impression that the language is a spin-off of Java, and it has been characterized by many as a marketing ploy by Netscape to give JavaScript the cachet of what was then the hot new web-programming language.[6][7]

JavaScript, despite the name, is essentially unrelated to the Java programming language even though the two do have superficial similarities. Both languages use syntaxes influenced by that of C syntax, and JavaScript copies many Java names and naming conventions. The language's name is the result of a co-marketing deal between Netscape and Sun, in exchange for Netscape bundling Sun's Java runtime with their then-dominant browser. The key design principles within JavaScript are inherited from the Self and Scheme programming languages.[8]

"JavaScript" is a trademark of Sun Microsystems. It was used under license for technology invented and implemented by Netscape Communications and current entities such as the Mozilla Foundation.[9]

Due to the widespread success of JavaScript as a client-side scripting language for web pages, Microsoft developed a compatible dialect of the language, naming it JScript to avoid trademark issues. JScript added new date methods to fix the non-Y2K-friendly methods in JavaScript, which were based on java.util.Date.[3] JScript was included in Internet Explorer 3.0, released in August 1996. The dialects are perceived to be so similar that the terms "JavaScript" and "JScript" are often used interchangeably. Microsoft, however, notes dozens of ways in which JScript is not ECMA-compliant.[10]

Netscape submitted JavaScript to Ecma International for standardization resulting in the standardized version named ECMAScript.[11]

JavaScript has become one of the most popular programming languages on the web. Initially, however, many professional programmers denigrated the language because its target audience was web authors and other such "amateurs", among other reasons.[12] The advent of AJAX returned JavaScript to the spotlight and brought more professional programming attention. The result was a proliferation of comprehensive frameworks and libraries, improved JavaScript programming practices, and increased usage of JavaScript outside of the browser, as seen by the proliferation of server-side JavaScript platforms.

Features

The following features are common to all conforming ECMAScript implementations, unless explicitly specified otherwise.

Imperative and structured

JavaScript supports all the structured programming syntax in C (e.g., if statements, while loops, switch statements, etc.). One partial exception is scoping: C-style block-level scoping is not supported (instead, Javascript has function-level scoping). JavaScript 1.7, however, supports block-level scoping with the let keyword. Like C, JavaScript makes a distinction between expressions and statements.

Dynamic

dynamic typing
As in most scripting languages, types are associated with values, not variables. For example, a variable x could be bound to a number, then later rebound to a string. JavaScript supports various ways to test the type of an object, including duck typing.[13]
object based
JavaScript is almost entirely object-based. JavaScript objects are associative arrays, augmented with prototypes (see below). Object property names are string keys: obj.x = 10 and obj["x"] = 10 are equivalent, the dot notation being syntactic sugar. Properties and their values can be added, changed, or deleted at run-time. Most properties of an object (and those on its prototype inheritance chain) can be enumerated using a for...in loop. JavaScript has a small number of built-in objects such as Function and Date.
run-time evaluation
JavaScript includes an eval function that can execute statements provided as strings at run-time.

Functional

first-class functions
Functions are first-class; they are objects themselves. As such, they have properties and can be passed around and interacted with like any other object.
inner functions and closures
Inner functions (functions defined within other functions) are created each time the outer function is invoked, and variables of the outer functions for that invocation continue to exist as long as the inner functions still exist, even after that invocation is finished (e.g. if the inner function was returned, it still has access to the outer function's variables) — this is the mechanism behind closures within JavaScript.

Prototype-based

prototypes
JavaScript uses prototypes instead of classes for inheritance. It is possible to simulate many class-based features with prototypes in JavaScript.
functions as object constructors
Functions double as object constructors along with their typical role. Prefixing a function call with new creates a new object and calls that function with its local this keyword bound to that object for that invocation. The constructor's prototype property determines the object used for the new object's internal prototype. JavaScript's built-in constructors, such as Array, also have prototypes that can be modified.
functions as methods
Unlike many object-oriented languages, there is no distinction between a function definition and a method definition. Rather, the distinction occurs during function calling; a function can be called as a method. When a function is called as a method of an object, the function's local this keyword is bound to that object for that invocation.

Miscellaneous

run-time environment
JavaScript typically relies on a run-time environment (e.g. in a web browser) to provide objects and methods by which scripts can interact with "the outside world". In fact, it relies on the environment to provide the ability to include/import scripts (e.g. HTML

<script> elements). (This is not a language feature per se, but it is common in most JavaScript implementations.)

variadic functions
An indefinite number of parameters can be passed to a function. The function can access them through formal parameters and also through the local arguments object.
array and object literals
Like many scripting languages, arrays and objects (associative arrays in other languages) can each be created with a succinct shortcut syntax. In fact, these literals form the basis of the JSON data format.
regular expressions
JavaScript also supports regular expressions in a manner similar to Perl, which provide a concise and powerful syntax for text manipulation that is more sophisticated than the built-in string functions.

Vendor-specific extensions

JavaScript is officially managed by Mozilla, and new language features are added periodically. However, only some non-Mozilla JavaScript engines support these new features:

  • conditional catch clauses
  • property getter and setter functions
  • iterator protocol adopted from Python
  • shallow generators/coroutines also adopted from Python
  • array comprehensions and generator expressions also adopted from Python
  • proper block scope via new let keyword
  • array and object destructuring (limited form of pattern matching)
  • concise function expressions (function(args) expr)
  • E4X

Syntax and semantics

As of 2009, the latest version of the language is JavaScript 1.8.1. It is a superset of ECMAScript (ECMA-262) Edition 3. Extensions to the language, including partial E4X (ECMA-357) support and experimental features considered for inclusion into future ECMAScript editions, are documented here.[14]

Sample code showcasing various JavaScript features:

 /* Finds the lowest common multiple of two numbers */
 function LCMCalculator(x, y) { // constructor function
     function checkInt(x) { // inner function
         if (x % 1 != 0)
             throw new TypeError(x + " is not an integer"); // exception throwing
         return x;
     }
     this.a = checkInt(x);
     this.b = checkInt(y);
 }
 // The prototype of object instances created by a constructor is
 // that constructor's "prototype" property.
 LCMCalculator.prototype = { // object literal
     gcd : function() { // method that calculates the greatest common denominator
         // Euclidean algorithm:
         var a = Math.abs(this.a), b = Math.abs(this.b);
         if (a < b) {
             var t = b; b = a; a = t; // swap variables
         }
         while (b !== 0) {
             t = b; // |t| already declared above (though we could redeclare if we wish)
             b = a % b;
             a = t;
         }
         // Only need to calculate gcd once, so "redefine" this method.
         // (Actually not redefinition - it's defined on the instance itself,
         // so that this.gcd refers to this "redefinition" instead of LCMCalculator.prototype.gcd.)
         // Also, 'gcd' == "gcd", this['gcd'] == this.gcd
         this['gcd'] = function() { return a; };
         return a;
     },
     "lcm" /* can use strings here */: function() {
         // Variable names don't collide with object properties, e.g. |lcm| is not |this.lcm|.
         // not using |this.a * this.b| to avoid FP precision issues
         var lcm = this.a / this.gcd() * this.b;
         // Only need to calculate lcm once, so "redefine" this method.
         this.lcm = function() { return lcm; };
         return lcm;
     },
     toString : function() {
         return "LCMCalculator: a = " + this.a + ", b = " + this.b;
     }
 };
 [[25,55],[21,56],[22,58],[28,56]].map(function(pair) { // array literal + mapping function
     return new LCMCalculator(pair[0], pair[1]);
 }).sort(function(a, b) { // sort with this comparative function
     return a.lcm() - b.lcm();
 }).forEach(function(obj) {
     /* Note: print() is a JS builtin function available in Mozilla's js CLI interpreter;
      * it's functionally equivalent to Java's System.out.println().
      * Within a web browser, print() is a very different function (opens the "Print Page" dialog),
      * so use something like document.write() instead.
      */
     print(obj + ", gcd = " + obj.gcd() + ", lcm = " + obj.lcm());
 });
 // Note: Array's map() and forEach() are predefined in JavaScript 1.6.
 // They are currently not available in all major JavaScript engines (including Internet Explorer's),
 // but are shown here to demonstrate JavaScript's inherent functional nature.

The output is:

LCMCalculator: a = 28, b = 56, gcd = 28, lcm = 56
LCMCalculator: a = 21, b = 56, gcd = 7, lcm = 168
LCMCalculator: a = 25, b = 55, gcd = 5, lcm = 275
LCMCalculator: a = 22, b = 58, gcd = 2, lcm = 638

Use in web pages

The primary use of JavaScript is to write functions that are embedded in or included from HTML pages and interact with the Document Object Model (DOM) of the page. Some simple examples of this usage are:

  • Opening or popping up a new window with programmatic control over the size, position, and attributes of the new window (i.e. whether the menus, toolbars, etc. are visible).
  • Validation of web form input values to make sure that they will be accepted before they are submitted to the server.
  • Changing images as the mouse cursor moves over them: This effect is often used to draw the user's attention to important links displayed as graphical elements.

Because JavaScript code can run locally in a user's browser (rather than on a remote server) it can respond to user actions quickly, making an application feel more responsive. Furthermore, JavaScript code can detect user actions which HTML alone cannot, such as individual keystrokes. Applications such as Gmail take advantage of this: much of the user-interface logic is written in JavaScript, and JavaScript dispatches requests for information (such as the content of an e-mail message) to the server. The wider trend of Ajax programming similarly exploits this strength.

A JavaScript engine (also known as JavaScript interpreter or JavaScript implementation) is an interpreter that interprets JavaScript source code and executes the script accordingly. The first JavaScript engine was created by Brendan Eich at Netscape Communications Corporation, for the Netscape Navigator web browser. The engine, code-named SpiderMonkey, is implemented in C. It has since been updated (in JavaScript 1.5) to conform to ECMA-262 Edition 3. The Rhino engine, created primarily by Norris Boyd (formerly of Netscape; now at Google) is a JavaScript implementation in Java. Rhino, like SpiderMonkey, is ECMA-262 Edition 3 compliant.

A web browser is by far the most common host environment for JavaScript. Web browsers typically use the public API to create "host objects" responsible for reflecting the DOM into JavaScript. The web server is another common application of the engine. A JavaScript webserver would expose host objects representing an HTTP request and response objects, which a JavaScript program could then manipulate to dynamically generate web pages.

A minimal example of a standards-conforming web page containing JavaScript (using HTML 4.01 syntax) would be:

 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
 "http://www.w3.org/TR/html4/strict.dtd">
 <html>
   <head><title>simple page</title></head>
   <body>
     <script type="text/javascript">
       document.write('Hello World!');
     </script>
     <noscript>
 
  Your browser either does not support JavaScript, or you have JavaScript turned off.
     </noscript>
   </body>
 </html>

Since JavaScript is the only language that the most popular browsers share support for, it has become a target language for many frameworks in other languages, even though JavaScript was never intended to be such a language.[5] Despite the performance limitations inherent to its dynamic nature, the increasing speed of JavaScript engines have made the language a surprisingly feasible compilation target.

Compatibility considerations

The DOM interfaces for manipulating web pages are not part of the ECMAScript standard, or of JavaScript itself. Officially, they are defined by a separate standardization effort by the C; in practice, browser implementations differ from the standards and from each other, and not all browsers execute JavaScript.

To deal with these differences, JavaScript authors can attempt to write standards-compliant code which will also be executed correctly by most browsers; failing that, they can write code that checks for the presence of certain browser features and behaves differently if they are not available.[15] In some cases, two browsers may both implement a feature but with different behavior, and authors may find it practical to detect what browser is running and change their script's behavior to match.[16][17] Programmers may also use libraries or toolkits which take browser differences into account.

Furthermore, scripts will not work for all users. For example, a user may:

  • use an old or rare browser with incomplete or unusual DOM support,
  • use a PDA or mobile phone browser which cannot execute JavaScript,
  • have JavaScript execution disabled as a security precaution,
  • or be visually or otherwise disabled and use a speech browser

To support these users, web authors can try to create pages which degrade gracefully on user agents (browsers) which do not support the page's JavaScript.

Security

JavaScript and the DOM provide the potential for malicious authors to deliver scripts to run on a client computer via the web. Browser authors contain this risk using two restrictions. First, scripts run in a sandbox in which they can only perform web-related actions, not general-purpose programming tasks like creating files. Second, scripts are constrained by the same origin policy: scripts from one web site do not have access to information such as usernames, passwords, or cookies sent to another site. Most JavaScript-related security bugs are breaches of either the same origin policy or the sandbox.

Cross-site vulnerabilities

A common JavaScript-related security problem is cross-site scripting, or XSS, a violation of the same-origin policy. XSS vulnerabilities occur when an attacker is able to cause a target web site, such as an online banking website, to include a malicious script in the webpage presented to a victim. The script in this example can then access the banking application with the privileges of the victim, potentially disclosing secret information or transferring money without the victim's authorization. A solution to XSS vulnerabilities is to use HTML escaping whenever displaying untrusted data.

XSS vulnerabilities can also occur because of implementation mistakes by browser authors.[18]

Another cross-site vulnerability is cross-site request forgery or CSRF. In CSRF, code on an attacker's site tricks the victim's browser into taking actions the user didn't intend at a target site (like transferring money at a bank). It works because, if the target site relies only on cookies to authenticate requests, then requests initiated by code on the attacker's site will carry the same legitimate login credentials as requests initiated by the user. In general, the solution to CSRF is to require an authentication value in a hidden form field, and not only in the cookies, to authenticate any request that might have lasting effects. Checking the HTTP Referrer header can also help.

"JavaScript hijacking" is a type of CSRF attack in which a <script> tag on an attacker's site exploits a page on the attacker's site that returns private information as JSON or JavaScript. Possible solutions include requiring an authentication token in the POST and GET parameters for any response that returns private JSON (even if it has no side effects); using POST and never GET for requests that return private JSON; and modifying the response so that it can't be used via a <script> tag (by, for example, wrapping the JSON in a JavaScript comment).

Misplaced trust in the client

Client-server applications, whether they involve JavaScript or not, must recognize that untrusted clients may be under the control of attackers. Thus any secret embedded in JavaScript could be extracted by a determined adversary, and the application author can't assume that his JavaScript runs as intended, or at all. Some implications:

  • Web site authors cannot perfectly conceal how their JavaScript operates, because the code is sent to the client, and obfuscated code can be reverse engineered.
  • JavaScript form validation only provides convenience for users, not security. If a site verifies that the user agreed to its terms of service, or filters invalid characters out of fields that should only contain numbers, it must do so on the server, not only the client.
  • Scripts can be selectively disabled, so JavaScript can't be relied on to prevent operations such as "save image".[19]
  • It would be extremely bad practice to embed a password in JavaScript (where it can be extracted by an attacker), then have JavaScript verify a user's password and pass "password_ok=1" back to the server (since the "password_ok=1" response is easy to forge).[20]

Browser and plugin coding errors

JavaScript provides an interface to a wide range of browser capabilities, some of which may have flaws such as buffer overflows. These flaws can allow attackers to write scripts which would run any code they wish on the user's system.

These flaws have affected major browsers including Firefox,[21] Internet Explorer,[22] and Safari.[23]

Plugins, such as video players, Macromedia Flash, and the wide range of ActiveX controls enabled by default in Microsoft Internet Explorer, may also have flaws exploitable via JavaScript, and such flaws have been exploited in the past.[24][25]

In Windows Vista, Microsoft has attempted to contain the risks of bugs such as buffer overflows by running the Internet Explorer process with limited privileges.[26] Google Chrome similarly limits page renderers to an operating-system-enforced "sandbox."

Sandbox implementation errors

Web browsers are capable of running JavaScript outside of the sandbox, with the privileges necessary to, for example, create or delete files. Of course, such privileges aren't meant to be granted to code from the web.

Incorrectly granting privileges to JavaScript from the web has played a role in vulnerabilities in both Internet Explorer[27] and Firefox.[28] In Windows XP Service Pack 2, Microsoft demoted JScript's privileges in Internet Explorer.[29]

Microsoft Windows allows JavaScript source files on a computer's hard drive to be launched as general-purpose, non-sandboxed programs. This makes JavaScript (like VBScript) a theoretically viable vector for a Trojan horse, although JavaScript Trojan horses are uncommon in practice.[30] (See Windows Script Host.)

Uses outside web pages

Outside the web, JavaScript interpreters are embedded in a number of tools. Each of these applications provides its own object model which provides access to the host environment, with the core JavaScript language remaining mostly the same in each application.

  • ActionScript, the programming language used in Adobe Flash, is another implementation of the ECMAScript standard.
  • Apple's Dashboard Widgets, Microsoft's Gadgets, Yahoo! Widgets, Google Desktop Gadgets, Serence Klipfolio are implemented using JavaScript.
  • The Mozilla platform, which underlies Firefox and some other web browsers, uses JavaScript to implement the graphical user interface (GUI) of its various products.
  • Adobe's Acrobat and Adobe Reader (formerly Acrobat Reader) support JavaScript in PDF files.[31]
  • Tools in the Adobe Creative Suite, including Photoshop, Illustrator, Dreamweaver and InDesign, allow scripting through JavaScript.
  • Microsoft's Active Scripting technology supports the JavaScript-compatible JScript as an operating system scripting language.
  • The Java programming language, in version SE 6 (JDK 1.6), introduced the javax.script package, including a JavaScript implementation based on Mozilla Rhino. Thus, Java applications can host scripts that access the application's variables and objects, much like web browsers host scripts that access the browser's Document Object Model (DOM) for a webpage.[32][33]
  • The Qt C++ toolkit includes a QtScript module to interpret JavaScript, analogous to javax.script.[34]
  • OpenOffice.org office application suite allows for JavaScript as one of its scripting languages.
  • Adobe Integrated Runtime is a JavaScript runtime that allows developers to create desktop applications.
  • The interactive music signal processing software Max/MSP released by Cycling '74, offers a JavaScript model of its environment for use by developers. It allows much more precise control than the default GUI-centric programming model.
  • Late Night Software's JavaScript OSA (aka JavaScript for OSA, or JSOSA), is a freeware alternative to AppleScript for Mac OS X. It is based on the Mozilla 1.5 JavaScript implementation, with the addition of a MacOS object for interaction with the operating system and third-party applications.[35]
  • ECMAScript was included in the VRML97 standard for scripting nodes of VRML scene description files.
  • Some high-end Philips universal remote panels, including TSU9600 and TSU9400, can be scripted using JavaScript.[36]
  • Sphere is an open source and cross platform computer program designed primarily to make role-playing games that use JavaScript as a scripting language.
  • The open-source Re-Animator framework allows developing 2D sprite-based games using JavaScript and XML.
  • Methabot is a web crawler that uses JavaScript as scripting language for custom filetype parsers and data extraction using E4X.
  • Unity3D uses JavaScript as its primary game scripting language.

Debugging

Within JavaScript, access to a debugger becomes invaluable when developing large, non-trivial programs. Because there can be implementation differences between the various browsers (particularly within the Document Object Model) it is useful to have access to a debugger for each of the browsers a web application is being targeted at.

Script debuggers are available for Internet Explorer, Firefox, Safari, Google Chrome, and Opera.

Three debuggers are available for Internet Explorer: Microsoft Visual Studio is the richest of the three, closely followed by Microsoft Script Editor (a component of Microsoft Office[37]), and finally the free Microsoft Script Debugger which is far more basic than the other two. The free Microsoft Visual Web Developer Express provides a limited version of the JavaScript debugging functionality in Microsoft Visual Studio.

Web applications within Firefox can be debugged using the Firebug add-on, or the older Venkman debugger. Firefox also has a simpler built-in Error Console, which logs and evaluates JavaScript. It also logs CSS errors and warnings.

Opera includes a richer set of tools called DragonFly.

WebKit's Web Inspector includes a JavaScript debugger[38] in Apple's Safari.

Some debugging aids are themselves bits of JavaScript code built to run on the Web. JSlint scans code for violations of a standard coding style. Web development bookmarklets and Firebug Lite provide variations on the idea of the cross-browser JavaScript console.

Since JavaScript is interpreted, loosely-typed, and may be hosted in varying environments, each incompatible with the others, a programmer has to take extra care to make sure the code executes as expected in as wide a range of circumstances as possible, and that functionality degrades gracefully when it does not.

Versions

Version Release date Equivalent to Netscape
Navigator
Mozilla
Firefox
Internet
Explorer
Opera Safari Google
Chrome
1.0 March 1996 2.0 3.0
1.1 August 1996 3.0
1.2 June 1997 4.0-4.05
1.3 October 1998 ECMA-262 1st edition / ECMA-262 2nd edition 4.06-4.7x 4.0
1.4 Netscape
Server
1.5 November 2000 ECMA-262 3rd edition 6.0 1.0 5.5 (JScript 5.5),
6 (JScript 5.6),
7 (JScript 5.7),
8 (JScript 6)
6.0,
7.0,
8.0,
9.0
1.6 November 2005 1.5 + Array extras + Array and String generics + E4X 1.5 3.0, 3.1
1.7 October 2006 1.6 + Pythonic generators + Iterators + let 2.0 3.2, 4.0 1.0
1.8 June 2008 1.7 + Generator expressions + Expression closures 3.0
1.8.1 1.8 + Minor Updates 3.5
1.9 1.8.1 + ECMAScript 5 Compliance 4

[39]

Related languages

The standardization effort for JavaScript needed to avoid trademark issues, so the ECMA 262 standard calls the language ECMAScript, three editions of which have been published since the work started in November 1996.

Objective-J is a strict superset of JavaScript that adds traditional inheritance and Smalltalk/Objective-C style dynamic dispatch and optional pseudo-static typing to pure JavaScript.

Microsoft's VBScript, like JavaScript, can be run client-side in web pages. VBScript has syntax derived from Visual Basic and is only supported by Microsoft's Internet Explorer.

JSON, or JavaScript Object Notation, is a general-purpose data interchange format that is defined as a subset of JavaScript.

JavaScript is also considered a functional programming language[1] like Scheme and OCaml because it has closures and supports higher-order functions.[40]

Mozilla browsers currently support LiveConnect, a feature that allows JavaScript and Java to intercommunicate on the web. However, support for LiveConnect is scheduled to be phased out in the future.

JavaScript and Java

A common misconception is that JavaScript is similar or closely related to Java; this is not so. Both have a C-like syntax, are object-oriented, are typically sandboxed and are widely used in client-side Web applications, but the similarities end there. Java has static typing; JavaScript's typing is dynamic (meaning a variable can hold an object of any type and cannot be restricted). Java is loaded from compiled bytecode; JavaScript is loaded as human-readable code. C is their last common ancestor language.

Nonetheless, JavaScript was designed with Java's syntax and standard library in mind. In particular, all Java keywords are reserved in JavaScript, JavaScript's standard library follows Java's naming conventions, and JavaScript's Math and Date classes are based on those from Java 1.0.[2][3]

See also

  • ECMAScript
  • JavaScript syntax
  • Client-side JavaScript
  • Server-side JavaScript
  • JSDoc
  • JSON
  • JSAN
  • Comparison of layout engines (ECMAScript)
  • Comparison of JavaScript-based source code editors
  • List of computer standards
  • List of ECMAScript engines

References

  1. 1.0 1.1 Douglas Crockford on Functional JavaScript (2:49): "[JavaScript] is also coincidentally the world's most popular functional programming language. JavaScript is and has always been, at least since [version] 1.2, a functional programming language."
  2. 2.0 2.1 "TechVision: Innovators of the Net: Brendan Eich and JavaScript". Web.archive.org. Archived from the original on 2008-02-08. http://web.archive.org/web/20080208124612/http://wp.netscape.com/comprod/columns/techvision/innovators_be.html. Retrieved 2009-05-19. 
  3. 3.0 3.1 3.2 "Brendan's Roadmap Updates: Popularity". Weblogs.mozillazine.org. http://weblogs.mozillazine.org/roadmap/archives/2008/04/popularity.html. Retrieved 2009-05-19. 
  4. Krill, Paul (2008-06-23). "JavaScript creator ponders past, future". InfoWorld. http://www.infoworld.com/article/08/06/23/eich-javascript-interview_1.html. Retrieved 2009-05-19. 
  5. 5.0 5.1 Hamilton, Naomi (2008-06-31). "The A-Z of Programming Languages: JavaScript". computerworld.com.au. http://www.computerworld.com.au/article/255293/-z_programming_languages_javascript. 
  6. "Programming languages used on the Internet and the World Wide Web (WWW)". Webdevelopersnotes.com. http://www.webdevelopersnotes.com/basics/languages_on_the_internet.php3. Retrieved 2009-05-19. 
  7. "O'Reilly - Safari Books Online - 0596101996 - JavaScript: The Definitive Guide, 5th Edition". Safari.oreilly.com. http://safari.oreilly.com/0596101996/jscript5-CHP-1. Retrieved 2009-05-19. 
  8. "ECMAScript Language Overview" (PDF). 2007-10-23. pp. 4. http://www.ecmascript.org/es4/spec/overview.pdf. Retrieved 2009-05-03. 
  9. "Sun Trademarks". Sun Microsystems. http://www.sun.com/suntrademarks/. Retrieved 2007-11-08. 
  10. Microsoft JScript Features - Non-ECMA
  11. "Netscape Press Release". Cgi.netscape.com. http://cgi.netscape.com/newsref/pr/newsrelease289.html. Retrieved 2009-05-19. 
  12. "JavaScript: The World's Most Misunderstood Programming Language". Crockford.com. http://www.crockford.com/javascript/javascript.html. Retrieved 2009-05-19. 
  13. Flanagan, David (2006). JavaScript: The Definitive Guide. O'Reilly Media. 176–178. ISBN 0596101996. 
  14. "About - MDC". Developer.mozilla.org. 2008-08-31. https://developer.mozilla.org/en/Core_JavaScript_1.5_Reference:About. Retrieved 2009-05-19. 
  15. Peter-Paul Koch, Object detection
  16. Peter-Paul Koch, Mission Impossible - mouse position
  17. Peter-Paul Koch, Browser detect
  18. MozillaZine, Mozilla Cross-Site Scripting Vulnerability Reported and Fixed
  19. Right-click “protection”? Forget about it. 2008-06-17. ISSN 1797-1993. http://blog.anta.net/2008/06/17/right-click-%e2%80%9cprotection%e2%80%9d-forget-about-it/. Retrieved 2008-06-17. 
  20. For an example of this bad practice, see http://javascript.internet.com/passwords/
  21. Mozilla Corporation, Buffer overflow in crypto.signText()
  22. Paul Festa, CNet, Buffer-overflow bug in IE
  23. SecurityTracker.com, Apple Safari JavaScript Buffer Overflow Lets Remote Users Execute Arbitrary Code and HTTP Redirect Bug Lets Remote Users Access Files
  24. SecurityFocus, Microsoft WebViewFolderIcon ActiveX Control Buffer Overflow Vulnerability
  25. Fusion Authority, Macromedia Flash ActiveX Buffer Overflow
  26. Mike Friedman, Protected Mode in Vista IE7
  27. US CERT, Vulnerability Note VU#713878: Microsoft Internet Explorer does not properly validate source of redirected frame
  28. Mozilla Foundation, Mozilla Foundation Security Advisory 2005-41: Privilege escalation via DOM property overrides
  29. Microsoft Corporation, Changes to Functionality in Microsoft Windows XP Service Pack 2: Part 5: Enhanced Browsing Security
  30. For one example of a rare JavaScript Trojan Horse, see Symantec Corporation, JS.Seeker.K
  31. "Javascript for Acrobat". http://www.adobe.com/devnet/acrobat/javascript.html. Retrieved 2009-08-18. 
  32. "javax.script release notes". Java.sun.com. http://java.sun.com/javase/6/webnotes/index.html#scripting. Retrieved 2009-05-19. 
  33. Flanagan 5th Edition, Pp 214 et seq
  34. Trolltech ASA, QtScript Module
  35. AppleScript#Open_Scripting_Architecture
  36. Koninklijke Philips Electronics NV
  37. JScript development in Microsoft Office 11 (MS InfoPath 2003)
  38. "Introducing Drosera - Surfin' Safari". Webkit.org. 2006-06-28. http://webkit.org/blog/61/introducing-drosera/. Retrieved 2009-05-19. 
  39. John Resig. "Versions of JavaScript". Ejohn.org. http://ejohn.org/blog/versions-of-javascript. Retrieved 2009-05-19. 
  40. The Little JavaScripter shows the relationship with Scheme in more detail.

Notes

  • McDuffie, Tina Spain (2003). JavaScript Concepts & Techniques: Programming Interactive Web Sites. Franklin, Beedle & Associates. ISBN 1-887-90269-4. 
  • McFarlane, Nigel (2003). Rapid Application Development with Mozilla. Prentice Hall Professional Technical References. ISBN 0-13-142343-6. 
  • Flanagan, David; Ferguson, Paula (2002). JavaScript: The Definitive Guide (4th ed.). O'Reilly & Associates. ISBN 0-596-00048-0. 
  • Flanagan, David (2006). JavaScript: The Definitive Guide (5th ed.). O'Reilly & Associates. ISBN 0-596-10199-6. 
  • Goodman, Danny; Markel, Scott (2003). JavaScript and DHTML Cookbook. O'Reilly & Associates. ISBN 0-596-00467-2. 
  • Goodman, Danny; Eich, Brendan (2001). JavaScript Bible. John Wiley & Sons. ISBN ISBN 0-7645-3342-8. 
  • Watt, Andrew H.; Watt, Jonathan A.; Simon, Jinjer L. (2002). Teach Yourself JavaScript in 21 Days. Pearson Education. ISBN 0-672-32297-8. 
  • Duffy, Scott (2003). How to do Everything with JavaScript. Osborne. ISBN 0-07-222887-3. 
  • Harris, Andy (2001). JavaScript Programming for the Absolute Beginner. Premier Press. ISBN 0-7615-3410-5. 
  • Burns, Joe; Growney, Andree S. (2001). JavaScript Goodies. Pearson Education. ISBN 0-7897-2612-2. 
  • Shelly, Gary B.; Cashman, Thomas J.; Dorin, William J.; Quasney, Jeffrey J. (2000). JavaScript: Complete Concepts and Techniques. Cambridge: Course Technology. ISBN 0-7895-6233-2. 
  • Heinle, Nick; Koman, Richard (1997). Designing with JavaScript. O'Reilly & Associates. ISBN 1-56592-300-6. 
  • Bhangal, Sham; Jankowski, Tomasz (2003). Foundation Web Design: Essential HTML, JavaScript, CSS, PhotoShop, Fireworks, and Flash. APress L. P.. ISBN 1-59059-152-6. 
  • Vander Veer, Emily A. (2004). JavaScript For Dummies (4th ed.). Wiley Pub.. ISBN 0-7645-7659-3. 
  • Powell, Thomas A.; Schneider, Fritz (2001). JavaScript: The Complete Reference. McGraw-Hill Companies. ISBN 0-07-219127-9. 

External links